We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
Protein kinase, cGMP-dependent, type I (HGNC Symbol)
Entrez gene summary
Mammals have three different isoforms of cyclic GMP-dependent protein kinase (Ialpha, Ibeta, and II). These PRKG isoforms act as key mediators of the nitric oxide/cGMP signaling pathway and are important components of many signal transduction processes in diverse cell types. This PRKG1 gene on human chromosome 10 encodes the soluble Ialpha and Ibeta isoforms of PRKG by alternative transcript splicing. A separate gene on human chromosome 4, PRKG2, encodes the membrane-bound PRKG isoform II. The PRKG1 proteins play a central role in regulating cardiovascular and neuronal functions in addition to relaxing smooth muscle tone, preventing platelet aggregation, and modulating cell growth. This gene is most strongly expressed in all types of smooth muscle, platelets, cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. Isoforms Ialpha and Ibeta have identical cGMP-binding and catalytic domains but differ in their leucine/isoleucine zipper and autoinhibitory sequences and therefore differ in their dimerization substrates and kinase enzyme activity. [provided by RefSeq, Sep 2011]
Q13976 [Direct mapping] cGMP-dependent protein kinase 1
Show all
Enzymes ENZYME proteins Transferases Kinases AGC Ser/Thr protein kinases MEMSAT-SVM predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Plasma proteins Disease related genes Potential drug targets Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Q13976 [Direct mapping] cGMP-dependent protein kinase 1
Show all
Enzymes ENZYME proteins Transferases Kinases AGC Ser/Thr protein kinases SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Plasma proteins Disease related genes Potential drug targets Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)